
1

BLE PROTOCOL



INTRODUCTION
Specs and usage

2

1



BLUETOOTH LOW ENERY

What is Bluetooth Low Energy technology?

▰ Wireless personal area network

▰ Improved Bluetooth technology

▰ Reduce power consumption

▰ Reduce cost

▰ Similar communication range 3



TECHNICAL SPECIFICATION

Classic Bluetooh Bluetooth Low Energy

Range 100m >100m

Data rate 2.1 Mbit/s 0.27 Mbit/s

Power consumption 1 W (reference) 0.01 – 0.50 W

4



APPLICATIONS

▰ Proximity sensing
▰ HID connectivity
▰ Health care
▰ Sport and fitness
▰ Internet connectivity
▰ IoT – Smart device – Game – …

5



BLE PROTOCOL STACK

6



PHYSICAL
Radio, modulation, band, etc

7

2



PHYSICAL LAYER

8



RADIO FREQUENCY

2.4 GHz ISM band

▰ Industrial Scientific Medical (ISM) band

▰ Licence free (with certain rules)

▰ 2400 MHz to 2483.5 MHz

▰ Also used by 802.11 (WiFi) and microwave, 

9



MODULATION

Gaussian frequency-shift keying

▰ Data transmitted through frequency changes

▰ Filters data with Gaussian filter prior to modulation

10



CHANNELS

▰ 40 channels

▰ 2402 MHz – 2480 MHz

▰ 2 MHz spacing

11



CHANNELS

▰ 3 advertising channel

▰ 37 data channels

12



CHANNELS HOPPING
Ad

ve
rti

si
ng

 e
ve

nt
s

13

Co
nn

ec
tio

n 
ev

en
ts



LINK LAYER
Protocol and format

14

3



LINK LAYER

15



OPERATING STATES

▰ Standby: No commincation

▰ Advertisement (beacon): 1-way broadcasting

▰ Scanning: Listen to advertising packets

▰ Initiating: Initiate connection to advertiser

▰ Connection: Slave – Master communication
16



CONNECTION TOPOLOGY AND ROLES

▰ Master can have multiple link layer connections
▰ Slave can have only one link layer connection

17



CONNECTION TOPOLOGY AND ROLES

▰ Master can be in both “scanning” and “master” state
▰ Master can be in both “initiator” and “master” state

18



CONNECTION TOPOLOGY AND ROLES

▰ Master can be in both “advertiser” and “master” state
▰ Slave can be in both “advertiser” and “slave” state

19



ADVERTISING PACKET STRUCTURE

20

▰ Preamble: Used for sync and timing estimation (broadcast = 0xAA)
▰ Access address: Broadcast (0x8E89BED6)
▰ PDU: Protocol Data Unit (header + payload)
▰ CRC: Cyclic Redundancy Check (error-detection)

Preamble Access address PDU CRC

1 Byte 4 Bytes 2 - 37 Byte(s) 3 Bytes



ADVERTISING PDU

21

Preamble Access address Header Payload CRC

▰ PDU type: Indicate PDU type of advertisement
▰ RFU: Reserved for Future Use
▰ TxAdd: Indicates whether the advertiser‘s address (in payload) is public or random
▰ RxAdd: N/A for advertising▰ Length: Define the size of the payload in Bytes (6 – 37 Bytes)

PDU Type RFU TxAdd RxAdd Length RFU

4 bits 2 bits 1 bit 1 bit 6 bits 2 bits



ADVERTISING PDU TYPES

22

Preamble Access address Header Payload CRC

▰ 0000 - ADV_IND: Advertising Indications, a peripheral device requests connection to any central device

▰ 0001 - ADV_DIRECT_IND: Similar to ADV_IND, yet the connection request is directed at a specific central device. 

▰ 0010 - ADV_NONCONN_IND: Non connectable devices, advertising information to any listening device.

▰ 0110 - ADV_SCAN_IND: Similar to ADV_NONCONN_IND, with the option additional 

information via scan responses. 

PDU Type RFU TxAdd RxAdd Length RFU

4 bits 2 bits 1 bit 1 bit 6 bits 2 bits



ADVERTISING PDU TYPES

23

Preamble Access address Header Payload CRC

▰ 0011 - SCAN_REQ: Sent by scanner in active scanning

▰ 0100 - SCAN_RSP: Sent by advertiser in response to SCAN_REQ

▰ 0101 - CONNECT_REQ: Sent by initiator (master) to initiate connection

▰ other - RESERVED

PDU Type RFU TxAdd RxAdd Length RFU

4 bits 2 bits 1 bit 1 bit 6 bits 2 bits



ADVERTISING PDU

24

Preamble Access address Header Payload CRC

▰ AdvA: Advertising address (device address)

▰ AdvData: Data

AdvA AdvData

6 Bytes 0-31 Bytes



AdvA AdvData

ADVERTISING PDU

25

Advertising address (AdvA)

▰ Public: Like MAC address, manufacturer receive an Organizational Unique Identifer (OUI) than

append a unique number for the device

▰ Random: In order to prevent devices to be traceable, Advertising address can be random

▰ Static: The address is randomly generated when the device is powered on▰ Private non-resolvable: The address is random and can change over time (withing the same 
power cyble)

▰ Private resolvable: The address is random and can change over time (within the same 
power cyble). The generated address can be used to derive the true address



AdvA AdvData

ADVERTISING PDU

26

▰ Length: Length of this data (including flag)

▰ Flag: Advertisement data type

▰ Data: Advertisement data

Length Flag Data Length Flag Data …

1 Byte 1 Byte Length Byte(s) 1 Byte 1 Byte Length Byte(s) …

0, 1 or more



Length Flag Data Length Flag Data …

ADVERTISING PDU

27

▰ 0x01 Flags: Device discovery capabilities

▰ 0x02-0x07 Service UUID: Device GATT services

▰ 0x08-0x09 Local name: Device name

▰ 0x0A TX power level: Device output power

▰ 0xFF Manufacturer specific data: User defined



ADVERTISING PDU - FLAGS

28

▰ RFU: Reserved for future use
▰ SLEBRH: Simultaneous LE and BR/EDR (Host)
▰ SLEBRC: Simultaneous LE and BR/EDR (Controller)
▰ BRNS: BR/EDR Not Supported
▰ LEGDM: LE General Discoverable Mode
▰ LELDM: LE Limited Discoverable Mode

Length Flag Data Length Flag Data …

0x02 0x01 RFU SLEBRH* SLEBRC* BRNS* LEGDM* LELDM*

1 Byte 1 Byte 3 bits 1 bit 1 bit 1 bit 1 bit 1 bit

* not official name



ADVERTISING PDU

29

Length Flag Data Length Flag Data …

00000002 00000001 000 0 0 1 1 0

1 Byte 1 Byte 3 bits 1 bit 1 bit 1 bit 1 bit 1 bit

* not official name



ADVERTISING PDU – SERVICE UUID

30

▰ UUID: Universally Unique Identifier of a GATT service (explained later)

Length Flag Data Length Flag Data …

0x11 0x07 UUID

1 Byte 1 Byte 16 Bytes



ADVERTISING PDU – SERVICE UUID

31

Length Flag Data Length Flag Data …

0x11 0x07 UUID

1 Byte 1 Byte 16 Bytes



ADVERTISING PDU – DEVICE NAME

32

▰ Device Name: Name of the device (as listed when scanned). In this case (flag = 0x08), 
it‘s a shortened version. The name is not NULL terminated.

Length Flag Data Length Flag Data …

Length 0x08 Device Name

1 Byte 1 Byte (Length -1) Byte(s)



ADVERTISING PDU – DEVICE NAME

33

Length Flag Data Length Flag Data …

Length 0x08 Device Name

1 Byte 1 Byte (Length -1) Byte(s)

Device Name (shortened): Hello
Length: 6
Type: Device Name (shortened) (0x08)
Device Name: Hello



ADVERTISING PDU – MANUFACTURER SPECIFIC

34

▰ Company ID: Company identifiers are unique numbers assigned by the Bluetooth SIG 

to member companies requesting one. E.g. Apple = 0x004c, Samsung = 0x0075.

▰ Data: The Manufacturer-Specific Data can contain any user-defined information

Length Flag Data Length Flag Data …

Length 0xFF Company ID Data

1 Byte 1 Byte 2 Bytes 0 – 28 Byte(s)



ADVERTISING PDU – MANUFACTURER SPECIFIC

35

Length Flag Data Length Flag Data …

Length 0xFF Company ID Data

1 Byte 1 Byte 2 Bytes 0 – 28 Byte(s)



PASSIVE SCANNING

36

Found device Channel (x)

Channel (y)

Channel (z)

Advertisement

Scanner (e.g. smartphone) Advertiser (e.g. smart watch)

Advertisement

Advertisement

Advertisement

Advertisement

Advertisement



ACTIVE SCANNING

37

Found device (name, services)

Advertisement

Scanner (e.g. smartphone) Advertiser (e.g. smart watch)

Scan request

Scan response
(name, services)



BROADCASTING DATA

38

Found device (data) Channel (x)

Channel (y)

Channel (z)

Advertisement (data)

Scanner (e.g. smartphone) Advertiser (e.g. smart watch)

Advertisement (data)

Advertisement (data)

Advertisement (data)

Advertisement (data)

Advertisement (data)



CONNECTION REQUEST PACKET STRUCTURE

39

Preamble Access address PDU CRC

1 Byte 4 Bytes 0 - 37 Byte(s) 3 Bytes

▰ Preamble: Used for sync and timing estimation (broadcast = 0xAA)
▰ Access address: Broadcast (0x8E89BED6)
▰ PDU: Protocol Data Unit
▰ CRC: Cyclic Redundancy Check (error-detection)



CONNECTION REQUEST PACKET STRUCTURE

40

Preamble Access address PDU CRC

▰ InitA: Initiators public or random device address

▰ AdvA: Advertising devices public or random device address

▰ LLData: Link Layer Data

InitA AdvA LLData

6 Bytes 6 Bytes 22 Bytes



InitA AdvA LLData

CONNECTION REQUEST PACKET STRUCTURE

41

▰ AA: The link layer connection's access address▰ CRCInit: Initialization value for the CRC calculation▰ WinSize: The transmitWindowSize value▰ WinOffset: The transmitWindowOffset value▰ Interval: Connection interval of data connection▰ Latency: The connSlaveLatency value▰ Timeout: The connSupervisionTimeout value

▰ ChM: Channel map which indicates Used and Unused data
channels. LSB represents data channel index 0. A bit value
of 0 indicates that the channel is Unused and a bit value of
1 indicates that the channel is Used. ▰ Hop: hopIncrement used in the data channel selection
algorithm. Random value in the range of 5 to 16. ▰ SCA: used to determine the worst case Master's sleep
clock accuracy.

AA CRCInit WinSize WinOffset Interval Latency TimeOut ChM Hop SCA

4 Bytes 3 Bytes 1 Byte 2 Bytes 2 Bytes 2 Bytes 2 Bytes 5 Bytes 5 bits 3 bits



INITIATING CONNECTION

42

Advertisement

Initiator (e.g. smartphone) Advertiser (e.g. smart watch)

Connect request

“Poll”

Data

Ack

“null”

Master (e.g. smartphone) Slave (e.g. smart watch)



DATA CHANNEL PACKET STRUCTURE

43

Preamble Access address PDU CRC

1 Byte 4 Bytes 0 - 37 Byte(s) 3 Bytes

▰ Preamble: Used for sync and timing estimation (0xAA or 0x55)
▰ Access address: Different for each link layer connection (see connection packet)
▰ PDU: Protocol Data Unit
▰ CRC: Cyclic Redundancy Check (error-detection)



DATA CHANNEL PACKET STRUCTURE

44

Preamble Access address Header Payload CRC

▰ LLID: Indicates whether the packet is an LL Data PDU or an LL Control PDU▰ NESN: Next expected Sequence Number
▰ NS: Sequence Number
▰ MD: More Data
▰ RFU: Reserved for Future Use▰ LENGTH: Indicates the length of the payload and MIC (if included) in Bytes

LLID NESN NS MD RFU LENGTH RFU

2 bits 1 bits 1 bit 1 bit 3 bits 5 bits 3 bits



DATA CHANNEL PACKET STRUCTURE

45

Preamble Access address Header Payload CRC

▰ 00 - RESERVED

▰ 01 - LL Data PDU: Continuation fragment of an L2CAP message or empty PDU

▰ 10 - LL Data PDU: Start of an L2CAP message

▰ 11 - LL Control PDU

LLID NESN NS MD RFU LENGTH RFU

2 bits 1 bits 1 bit 1 bit 3 bits 5 bits 3 bits



LOGICAL LINK CONTROL & 
ADAPTATION PROTOCOL
Protocol and format

46

4



LOGICAL LINK CONTROL & ADAPTATION PROTOCOL

47



L2CAP

Logical Link Control and Adaptation Protocol (L2CAP)

▰ All application data is sent using L2CAP

▰ Communication model based on channels
▰ A channel represents a data flow between L2CAP entities in remote devices

▰ Logical channels multiplexes various protocols/services over the same physical link▰ Channels could have fixed specification or dynamic on the need basis

▰ Connection-oriented and connection-less data services

▰ Connection-oriented: connection between two devices, where a CID identifies each

endpoint of the channel

▰ Connection-less: data flow restricted to a single direction▰ Limited MTU (Max Transmission Unit): segmentation and re-assembly

48



L2CAP PACKET FORMAT

49

Preamble Access address Header Payload CRC

Length CID Payload

2 Bytes 2 Bytes Length Bytes

▰ Length: Length of the L2CAP Payload
▰ CID: Either fixed channels or connection oriented channels
▰ Payload: Protocol Data Unit



L2CAP – CHANNEL IDENTIFIER

Channel IDentifier (CID)

▰ Sort of TCP/UDP port

▰ Local name representing a channel end-point

▰ One device cannot use the same CID for two different channels

▰ One CID could be use by multiple devices at the same time

▰ CIDs from 0x0001 to 0x003F have a fixed purpose

▰ CIDs from 0c0040 to 0xFFFF are dynamically allocated
50



CHANNEL IDENTIFIER

CID Description

0x0004 Attribute protocol

0x0005 LE L2CAP signaling channel

0x0006 Security manager protocol

51

Main CID for BLE



ATTRIBUTE PROTOCOL
Protocol and format

52

5



ATTRIBUTE PROTOCOL

53



ATTRIBUTE PROTOCOL

Attribute Protocol (ATT)

▰ Peer-to-peer protocol between server and client
▰ Server: contains data (attributes)
▰ Client: request data

▰ A device can implement both client and server roles▰ Attribute structure
▰ Handle: The ID used to select the attribute (when reading/writing/etc)
▰ Type: The type of value (https://www.bluetooth.com/specifications/gatt/characteristics)
▰ Value: Content of the attribue
▰ Permission: controls whether they can be read or written or shall be sent over encrypted channel

54

Handle Type Value Permission

2 Bytes 2 or 16 Bytes 0 – 512 Byte(s) Implementation specific



ATTRIBUTE TYPE

▰ Universal Unique IDentifier (UUID)
▰ Bluetooth Base UUID: 0000xxxx-0000-1000-8000-00805F9B34FB▰ xxxx: Assigned number (2 Bytes) officially adopted BLE Services 

▰ In order to save bits in ATT packet, types officially adopted by BLE Services are sent in 
its compressed 2 Bytes form▰ When custom types are used, the full UUID is sent

55



ATT PACKET FORMAT

56

Preamble Access address Header Payload CRC

Length CID Payload

AuthSignFlag CmdFlag Method Parameters Authentication Signature

1 bit 1 bit 6 bits (ATT_MTU - 1) Bytes or (ATT_MTU – 13) Bytes (optional) 12 Bytes

LL

L2CAP

ATT

▰ AuthSignFlag: Presence of authentication signature
▰ CmdFlag: Command flag
▰ Method: Define the request type (find, read, write, etc)
▰ Parameters: Parameters for the request/response/…
▰ Authentication signature (optional): Only for write command



AuthSignFlag CmdFlag Method Parameters Authentication Signature

ATT METHOD TYPE

57

Preamble Access address Header Length CID Payload CRC

Methods
▰ Request: exchange MTU, read/write/find attribute
▰ Response: exchange MTU, read/write/find attribute
▰ Command: write attribute
▰ Indication: Indicate attribute‘s value
▰ Confirmation: Confirm that the client has received the indication
▰ Notification: attribute value (without prior request)



EXAMPLE OF METHODS

58

Methods
▰ Find information: obtain the mapping of all attribute handles between a given

starting handle and ending handle
▰ Read by group type: obtain the values of attributes that matches a given group type. 

The grouping is defined by a higher layer specification
▰ Read: read an attribute‘s value that matches a given handle
▰ Write: write an attribute‘s value that matches a given handle
▰ Signed write command: write an attribute‘s value that matches a given handle 

(typically into a control-point attribute) with an authentication signature
▰ Handle value: Indicating attribute‘s value without client request



MORE EXAMPLE OF METHODS

59

▰ MTU exchange
▰ Find by type value
▰ Read blob
▰ Read multiple
▰ Read by type

▰ Signed write command
▰ Write command
▰ Prepare write
▰ Execute write
▰ Error

Methods

http://mutsughost1.github.io/2015/02/26/ATT-Spec/#Attribute_Protocol_PDUs



ATT PACKET FORMAT

60

AuthSign
Flag

Cmd
Flag Method Parameters

Find info req. 0 0 000100 First handle (2 Bytes) Ending handle (2 Bytes)

Find info resp. 0 0 000101 Format (1 Byte) Attribute type (2 or 16 Bytes)

Read by group type req. 0 0 010000 First handle Ending handle Attribute type

Read by group type resp. 0 0 010001 Length (1 Byte) Handle End 
handle Value Handle … …

Read req. 0 0 001010 Handle (2 Bytes)

Read req. 0 0 001011 Value



ATT PACKET FORMAT

61

AuthSign
Flag

Cmd
Flag Method Parameters

Write request 0 0 010010 Handle (2 Bytes) Value

Write response 0 0 010011

Signed write command 1 1 010010 Handle Value Auth. signature (12 Bytes)

Handle value indication 0 0 011101 Handle Value

Handle value notification 0 0 011110



GENERIC ATTRIBUTE 
PROFILE 
Protocol and format

62

6



GENERIC ATTRIBUTE PROFILE (GATT)

63



GATT DESCRIPTION

Generic Attribute Profile (GATT)

ATT protocol allows us to read/write/find attributes. 

Attributes can be organised in „services“, which

group related data together. This faciliate the

discoverability of attributes and the data structure. 

GATT defines the way the service are organized. 

64



GATT STRUCTURE

▰ Service: GATT services group conceptually related attributes in one common

section of the attribute information set in the GATT server

▰ Characteristics: You can understand characteristics as containers for user data. 

They always include at least two attributes: the characteristic declaration and the

characteristic value

▰ Characteristics declaration: standardized unique UUID used exclusively to

denote the beginning of characteristics

▰ Characteristics value: the actual user data

▰ Descriptor: mostly used to provide the client with metadata (additional information

about the characteristic and its value)

65



GATT – FIND PRIMARY SERVICES

66



GATT - ATTRIBUTES LIST

67

Handle UUID Value

0x0001 0x2800 (service) 0x180D (Heart rate)

0x0003 0x2803 (char) NOT 0x0004 0x2a37 (HRM)

0x004 0x2A37 (HRM) 0x1234 (BPM)

0x009 0x2902 (CCCD) 0x0001 (NOT)

0x00D 0x2803 (char) RO 0x000f 0x2a38 (BSL)

0x000f 0x2a38 (BSL) 0x4321 (finger)

0x0010 0x2800 (service) 0x1810 (Blood pressure)

0x0012 0x2803 (char) NOT 0x0013 0x2a35 (BPM)

… … … … …



Handle UUID Value

0x0001 0x2800 (service) 0x180D (Heart rate)

0x0003 0x2803 (char) NOT 0x0004 0x2a37 (HRM)

0x004 0x2A37 (HRM) 0x1234 (BPM)

0x009 0x2902 (CCCD) 0x0001 (NOT)

0x00D 0x2803 (char) RO 0x000f 0x2a38 (BSL)

0x000f 0x2a38 (BSL) 0x4321 (finger)

0x0010 0x2800 (service) 0x1810 (Blood pressure)

0x0012 0x2803 (char) NOT 0x0013 0x2a35 (BPM)

… … … … …

GATT - ATTRIBUTES LIST

68

Service



Handle UUID Value

0x0001 0x2800 (service) 0x180D (Heart rate)

0x0003 0x2803 (char) NOT 0x0004 0x2a37 (HRM)

0x004 0x2A37 (HRM) 0x1234 (BPM)

0x009 0x2902 (CCCD) 0x0001 (NOT)

0x00D 0x2803 (char) RO 0x000f 0x2a38 (BSL)

0x000f 0x2a38 (BSL) 0x4321 (finger)

0x0010 0x2800 (service) 0x1810 (Blood pressure)

0x0012 0x2803 (char) NOT 0x0013 0x2a35 (BPM)

… … … … …

GATT - ATTRIBUTES LIST

69

Service

Characteristic



Handle UUID Value

0x0001 0x2800 (service) 0x180D (Heart rate)

0x0003 0x2803 (char) NOT 0x0004 0x2a37 (HRM)

0x004 0x2A37 (HRM) 0x1234 (BPM)

0x009 0x2902 (CCCD) 0x0001 (NOT)

0x00D 0x2803 (char) RO 0x000f 0x2a38 (BSL)

0x000f 0x2a38 (BSL) 0x4321 (finger)

0x0010 0x2800 (service) 0x1810 (Blood pressure)

0x0012 0x2803 (char) NOT 0x0013 0x2a35 (BPM)

… … … … …

GENERIC ATTRIBUTE PROFILE

70

Service

Characteristic

Descriptor



GENERIC ACCESS 
PROFILE 
Protocol and format

71

7



GENERIC ACCESS PROFILE 

72



Generic access profile (GAP)

▰ All Bluetooth device should have a GAP service in their GATT server▰ UUID for GAP is 0x1800

▰ GAP contains the following characteristics
▰ Device name: name of the device as a UTF-8 string▰ Appearance: define how to represent the device to the user, i.e. using an icon, a string, or similar
▰ Peripheral preferred connection parameters: connection parameters such as connection interval, 

timeout, etc▰ Central address resolution: Used for Resolvable Private Address
▰ Resolvable private address only: Status whether it is using RPA

GENERIC ACCESS PROFILE

73



SECURITY MANAGER 
Protocol and format

74

8



SECURITY MANAGER

75



Security in Bluetooth Low Energy

▰ Eavesdropping protection

▰ Man-in-the-middle protection

▰ Privacy of devices

▰ Security shared

▰ Link Layer: encryption and authentication

▰ Security Manager: security protocol (L2CAP CID = 0x0006)

SECUITY MANAGER

76



▰ Security Level 1 without security at all

▰ Security Level 2 AES-CMAC encryption (aka AES-128 via RFC 4493, which is FIPS-compliant) 

during communications when the devices are unpaired

▰ Security Level 3 supports encryption and requires pairing

▰ Security Level 4 supports encryption and requires pairing but instead of AES-CMAC for

encryption, ECDHE (aka Elliptic Curve Diffie-Hellman aka P-256, which is also FIPS-compliant) 

is used instead

SECUITY MANAGER – SECURITY LEVEL

77



▰ Security Mode 1 securiy levels without signing of data

▰ Security Mode 2 security levels with signing of data, including both paired

and unpaired communications. 

▰ Mixed Security Mode is when a device is required to support both Security 

Mode 1 and 2, i.e., it needs to support signed and unsigned data.

SECUITY MANAGER – SECURITY MODE

78



▰ Phase 1: exchange security capabilities. 

▰ Phase 2: devices agree on a Temporary Key (TK) 

in order to generate the Short Term Key (STK)

▰ Phase 3: generate Long Term Key (LTK), 

Connection Signature Resolving Key (CSRK) for

signing and Identity Resolving Key (IRK) for

address generation and lookup. STK is used to

distribute the new keys.

SECUITY MANAGER – PAIRING

79



Phase One

Exchange security capabilities.

PAIRING – PHASE 1

80

Preamble Access address PDU CRC

InitA AdvA LLData

Opcode I/O 
capbility

OOB Data 
Flag

Auth
Request

Max Encryption 
Key Size

Initiator 
Distribution

Responder Key 
Destribution

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte



Opcode

▰ 0x01 pairing request

▰ 0x02 pairing response

PAIRING – PHASE 1

81

Opcode I/O 
capbility

OOB Data 
Flag

Auth
Request

Max Encryption 
Key Size

Initiator 
Distribution

Responder Key 
Destribution

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte



I/O capability
▰ 0x00 Display Only
▰ 0x01 Display Yes/No (both a display and a way to designate yes or no)
▰ 0x02 Keyboard Only
▰ 0x03 No Input/No Output (e.g. headphones)
▰ 0x04 Keyboard Display (both a keyboard and a display screen)
▰ 0x05 - 0xFF Reserved

PAIRING – PHASE 1

82

Opcode I/O 
capbility

OOB Data 
Flag

Auth
Request

Max Encryption 
Key Size

Initiator 
Distribution

Responder Key 
Destribution

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte



OOB (out-of-band) Data Flag

▰ 0x00 no OOB data

▰ 0x01 OOB data presence

PAIRING – PHASE 1

83

Opcode I/O 
capbility

OOB Data 
Flag

Auth
Request

Max Encryption 
Key Size

Initiator 
Distribution

Responder Key 
Destribution

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte



PAIRING – PHASE 1

84

Opcode I/O 
capbility

OOB Data 
Flag

Auth
Request

Max Encryption 
Key Size

Initiator 
Distribution

Responder Key 
Destribution

Bonding Flag MITM Flag Secure Connection Keypress RFU

2 bits 1 bit 1 bit 1 bit 3 bits

▰ Bonding flags: bonding is the exchange of long-term keys after pairing occurs. 0x00 is for no bonding, 0x01 is for bonding. If bonding is used, it
means two devices can be paired, and a reboot or sleep mode will not unpair the devices. ▰ MITM flag: 0x00 is that MITM protection is not requested, 0x01 is that MITM protection is requested. ▰ Secure connection: if this is set to 1, the device is requesting to do Secure Connection Only Mode, otherwise it is set to 0. ▰ Keypress: if set to 1 it means Passkey Entry needs to be used, otherwise it is ignored. ▰ RFU: Reserved for future use



▰ Encryption Key Size: size of the encryption key in octets

▰ Initiator Distribution: contains flags that states what keys will be distributed

▰ Responder Kez Distribution: contains flags that states what keys will be distributed

PAIRING – PHASE 1

85

Opcode I/O 
capbility

OOB Data 
Flag

Auth
Request

Max Encryption 
Key Size

Initiator 
Distribution

Responder Key 
Destribution

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte



▰ Numeric Comparison. Both devices indicate the same six digit identifier on their screens/LCS 

displays. If it matches, you confirm the connection. This is not meant to prevent MitM attack, 

but only verify you are pairing the intended devices together.

▰ Just Works. Whenever you don‘t have a screen/display (e.g. headphone), Just Works method

will use the numeric comparison with the six digits set to 000000. While Numeric Comparison

requires some on-the-fly math if you are performing a MITM attack, there is no MITM protection

with Just Works. 

PAIRING – PHASE 1 – PAIRING METHODS

86



▰ Passkey Entry. Instead of just validating if the two identifier match, with passkey, the user is

requested to enter manually the six digit code, which should be displayed on the other device.

▰ Out Of Band (OOB). A communication method outside of the Bluetooth communication channel

is not used, but the information is still secured. The Apple Watch is a good example of this

workflow. During the Apple Watch pairing method, a swirling display of dots is displayed on the

watch face, and you point the pairing iPhone’s camera at the watch face while (according to

Apple) bits of information are transmitted via this process. Another example is using Near Field 

Communication (NFC) between NFC-capable headphones and a pairing phone.

PAIRING – PHASE 1 – PAIRING METHODS

87



▰ Passkey Entry. Instead of just validating if the two identifier match, with passkey, the user is

requested to enter manually the six digit code, which should be displayed on the other device.

▰ Out Of Band (OOB). A communication method outside of the Bluetooth communication channel

is not used, but the information is still secured. The Apple Watch is a good example of this

workflow. During the Apple Watch pairing method, a swirling display of dots is displayed on the

watch face, and you point the pairing iPhone’s camera at the watch face while (according to

Apple) bits of information are transmitted via this process. Another example is using Near Field 

Communication (NFC) between NFC-capable headphones and a pairing phone.

PAIRING – PHASE 1 – PAIRING METHODS

88



DEMO
Let’s sniff and RE some BLE

89

9



BLE SNIFFER

90

(34€ on Amazon)



RESOURCES

▰ http://blog.bluetooth.com/bluetooth-low-energy-it-starts-with-advertising

▰ http://www.ti.com/lit/an/swra475a/swra475a.pdf

▰ http://www.fte.com/docs/Ble_101_frontline.pps

▰ https://github.com/riotrf/RIOT.RF/wiki/Link-Layer-Packet-Format

▰ https://e2echina.ti.com/cfs-file/__key/telligent-evolution-components-attachments/00-103-01-00-00-03-

93-04/handouts_5F00_WSNs_5F00_BT_2D00_LE.pdf

▰ https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/slides-interim-2016-t2trg-2-7

▰ http://mutsughost1.github.io/2015/02/26/ATT-Spec/

▰ Getting Started with Bluetooth Low Energy (O‘Reilly)

▰ https://duo.com/decipher/understanding-bluetooth-security
91


